LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhomogeneous Double Optical Gating of High-Intensity Isolated Attosecond Pulse Generation in Crossed Metal Nanostructures

Photo by kellysikkema from unsplash

We propose and investigate an effective method for obtaining high-energy and high-intensity isolated attosecond pulses (IAPs) using the inhomogeneous double optical gating (DOG) technology in specifically designed metal nanostructures. First,… Click to show full abstract

We propose and investigate an effective method for obtaining high-energy and high-intensity isolated attosecond pulses (IAPs) using the inhomogeneous double optical gating (DOG) technology in specifically designed metal nanostructures. First, using the homogeneous mid-infrared DOG technology modulated by a linearly near-infrared field, we obtain a harmonic yield of 2.5 orders of magnitudes higher than that from the single polarization gating (PG) technology. Further, introducing the crossed metal nanostructures along the driven and gating components, we can extend not only the harmonic cutoff but also enhance the harmonic yield attributed to the plasmonic field enhancement near the vicinity of metal nanostructures. As a result, we find a single harmonic plateau with smaller modulations. The supercontinuum is not very sensitive to the pulse duration of the near-infrared field, and the harmonic yields can be further enhanced with increase in the pulse intensity of the near-infrared field, showing a 108 eV supercontinuum with an intensity enhancement of 4 orders of magnitudes. Finally, by superposing the selected harmonics from the inhomogeneous DOG scheme, we obtain a 33 as SAP with an intensity increase of 4 orders of magnitudes.

Keywords: isolated attosecond; inhomogeneous double; intensity isolated; intensity; metal nanostructures; high intensity

Journal Title: Journal of Russian Laser Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.