Basing on electron spin resonance (ESR) data for Bi2Te3 doped by Mn ions we argue that this compound can be inhomogeneous and consists of two components with the different structures.… Click to show full abstract
Basing on electron spin resonance (ESR) data for Bi2Te3 doped by Mn ions we argue that this compound can be inhomogeneous and consists of two components with the different structures. Its main phase Bi 2−xMn xTe 3 is intertwined with the microscopical inclusions of MnBi phase. The integral volume of these intermetal clusters is less than 1 % but nevertheless they exert the serious impact on the dynamic magnetic properties of the entire system. These inclusions are ferromagnetic with the Curie temperature of 630 K, while the main bulk phase Bi 2−xMn xTe 3 has x= 0.05 orders at Tc= 10 K (qualitatively this twophase picture is valid not only for this given x). Below this temperature two ferromagnetic phases coexist. Since the integral spontaneous polarization in MnBi phase is averaged out due to its random orientations in different clusters the time-reversal symmetry of Bi 2Te 3 doped by Mn ions is violated only at the low-temperature ferromagnetic transition.
               
Click one of the above tabs to view related content.