We report the evidence of weak ferromagnetic and ferroelectric ordering in polycrystalline Pb(Fe0.634 W0.266Nb0.1)O3 (0.8(PbFe2/3W1/3)O3–0.2Pb(Fe1/2Nb1/2) O3) (PFWN) ceramic at room temperature. The Pb(Fe0.634 W0.266Nb0.1)O3solid solution synthesized through the columbite method.… Click to show full abstract
We report the evidence of weak ferromagnetic and ferroelectric ordering in polycrystalline Pb(Fe0.634 W0.266Nb0.1)O3 (0.8(PbFe2/3W1/3)O3–0.2Pb(Fe1/2Nb1/2) O3) (PFWN) ceramic at room temperature. The Pb(Fe0.634 W0.266Nb0.1)O3solid solution synthesized through the columbite method. The obtained single-phase Pb(Fe0.634 W0.266Nb0.1)O3ceramic was subjected to X-ray diffraction, neutron diffraction, magnetization, Mössbauer spectroscopy, and ferroelectric measurements. The X-ray diffraction and neutron diffraction pattern confirms the formation of single phase without any traces of pyrochlore phases, having cubic structure with Pm-3m space group. The Rietveld refinements were carried out on both patterns, and ND data confirms the G-type antiferromagnetic structure with propagation vector (k = 1/2, 1/2, and 1/2). However, along with the antiferromagnetic ordering of the Fe spins, we also observed the existence of weak ferromagnetism. This result was confirmed through (i) a clear opening of hysteresis (M − H) loop, (ii) bifurcation of the field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities, (iii) spin-glass behavior, and (iv) Mössbauer spectroscopy.
               
Click one of the above tabs to view related content.