LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Random Crystal Field Effect on the Kinetic Spin-1 and Spin-3/2 Under a Time-Dependent Oscillating Field Phase Transitions

Photo by jontyson from unsplash

The effect of random crystal field on the stationary states of the kinetic spin-1 and spin-3/2 Blume-Capel model is investigated within the framework of the mean field approach. The Glauber-type… Click to show full abstract

The effect of random crystal field on the stationary states of the kinetic spin-1 and spin-3/2 Blume-Capel model is investigated within the framework of the mean field approach. The Glauber-type stochastic dynamics is used to describe the time evolution of the system which is subjected to a time-dependent oscillating external magnetic field. The model exhibits first- and second-order transitions as well as dynamical tricritical, triple and an isolated critical end points. We found that the system displays reentrant phenomenon for both α = 0 and α > 0. Moreover, the system exhibits in the phase space a fixed points and limit cycles with circle, elliptic and parallelogram shapes.

Keywords: kinetic spin; field; time; spin; random crystal; crystal field

Journal Title: Journal of Superconductivity and Novel Magnetism
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.