Nickel laterite ore and zinc-bearing dust are multi-metal-associated and intractable resources. Comprehensive and cooperative utilization of zinc-bearing dust and nickel laterite ore for the preparation of spinel ferrites with enhanced… Click to show full abstract
Nickel laterite ore and zinc-bearing dust are multi-metal-associated and intractable resources. Comprehensive and cooperative utilization of zinc-bearing dust and nickel laterite ore for the preparation of spinel ferrites with enhanced magnetic properties by a facile process was proposed. The structure and magnetic properties of as-prepared spinel ferrites were characterized by X-ray diffraction (XRD), Raman spectroscopy, and Physical Property Measurement System (PPMS). The effect of mass ratios of zinc-bearing dust to nickel laterite ore, calcination temperature, and Zn substitution content on the as-prepared samples was investigated in detail. A single phase of Zn-substituted spinel ferrites (x=ā0.00, 0.10, 0.20, and 0.30) could be obtained when the mass ratios were controlled at 1:0.4, 1:4:1.8, 1:2:1.5, and 1:1:1.2 after being calcined at 900 āC for 30 min, respectively. The magnetic property tests present that the as-prepared spinel ferrite exhibits enhanced magnetic properties with the saturation magnetization (Ms) value of 66.8 emu gāā1 and the coercivity (Hc) value of 26 Oe when the mass ratio was controlled at 1:1:1.2. This research could provide an effective way to transfer two intractable resources into soft magnetic materials.
               
Click one of the above tabs to view related content.