The stability and electronic and magnetic properties of RhnOs (n= 2–12) clusters in their most stable configurations were systematically studied by using density functional theory (DFT) at M06L/aug-cc-pVDZ level. Calculation of… Click to show full abstract
The stability and electronic and magnetic properties of RhnOs (n= 2–12) clusters in their most stable configurations were systematically studied by using density functional theory (DFT) at M06L/aug-cc-pVDZ level. Calculation of the second-order difference of energies and fragmentation energies exhibited that Rh3Os, Rh5Os, Rh7Os, and Rh9Os clusters are more stable than any other clusters. The calculated HOMO-LUMO energy gaps of the RhnOs clusters are found to be in the range of 0.018 to 0.299 eV, implying that the metallic behavior can appear in these clusters. Accordingly, the RhnOs clusters can be employed as heterogeneous nanocatalysts in many chemical reactions. The local Fukui function (fk−)$f_{k}^{-} )$ has also been calculated, and the obtained results reveal that the highest fk−$f_{k}^{-} $ values are predicted for the Rh atoms. Therefore, the Rh atoms in the clusters are considered the most reactive sites that undergo reactions with electrophilic reagents. The analysis of the magnetic properties of the RhnOs clusters shows that the total magnetic moment per atom of these clusters varies from 0.67 to 1.75 µB/atom. And, the PDOS analysis reveals that the d orbitals play a crucial role for the magnetism of the RhnOs clusters, and the contribution of the s and p orbitals is small.
               
Click one of the above tabs to view related content.