LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of Electronic Structure, Magnetism, and Half-Metallicity of New Heusler Compounds CsTmO2 (Tm = Fe, Co, Ni, and Cu)

Photo from wikipedia

The density functional calculations were performed using the full-potential linearized augmented plane wave (FPLAPW) method for new Heusler alloys CsTmO2 (Tm = Fe, Co, Ni, and Cu). All compounds were… Click to show full abstract

The density functional calculations were performed using the full-potential linearized augmented plane wave (FPLAPW) method for new Heusler alloys CsTmO2 (Tm = Fe, Co, Ni, and Cu). All compounds were stable in FM AlCu2Mn-type structure. Results revealed that these alloys can be experimentally synthesized according to the calculated cohesive and formation energies. CsTmO2 (Tm = Fe, Co, Ni, and Cu) alloys in AlCu2Mn-type and CuHg2Ti-type structures were half-metallic ferromagnets. The origin of half-metallicity in CsNiO2 alloy was also discussed. The total magnetic moment of CsTmO2 (Tm = Fe, Co, Ni, and Cu) alloys in both structures were 3 μB per formula unit and obeyed the Slater-Pauling rule (Mtot = 22 − Ztot). The relationship between the magnetism and half-metallicity of all compounds and the lattice constants was also studied. The half-metallic character in combined alloys CsTmO2 (Tm = Fe, Co, Ni, and Cu) improved in comparison with Heusler alloys including transition metals which indicated that they may be good candidates for practical applications in spintronics.

Keywords: magnetism half; half metallicity; heusler; new heusler

Journal Title: Journal of Superconductivity and Novel Magnetism
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.