The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time… Click to show full abstract
The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as − 10 dB.
               
Click one of the above tabs to view related content.