LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Simple Kinetic Model for the Phase Transition of the van der Waals Fluid

Photo from wikipedia

A simple kinetic model, which is presumably minimum, for the phase transition of the van der Waals fluid is presented. In the model, intermolecular collisions for a dense gas has… Click to show full abstract

A simple kinetic model, which is presumably minimum, for the phase transition of the van der Waals fluid is presented. In the model, intermolecular collisions for a dense gas has not been treated faithfully. Instead, the expected interactions as the non-ideal gas effect are confined in a self-consistent force term. Collision term plays just a role of thermal bath. Accordingly, it conserves neither momentum nor energy, even globally. It is demonstrated that (i) by a natural separation of the mean-field self-consistent potential, the potential for the non-ideal gas effect is determined from the equation of state for the van der Waals fluid, with the aid of the balance equation of momentum, (ii) a functional which monotonically decreases in time is identified by the H theorem and is found to have a close relation to the Helmholtz free energy in thermodynamics, and (iii) the Cahn–Hilliard type equation is obtained in the continuum limit of the present kinetic model. Numerical simulations based on the Cahn–Hilliard type equation are also performed.

Keywords: van der; der waals; model; waals fluid; kinetic model

Journal Title: Journal of Statistical Physics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.