LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Response and Sensitivity Using Markov Chains

Photo by cdc from unsplash

Dynamical systems are often subject to forcing or changes in their governing parameters and it is of interest to study how this affects their statistical properties. A prominent real-life example… Click to show full abstract

Dynamical systems are often subject to forcing or changes in their governing parameters and it is of interest to study how this affects their statistical properties. A prominent real-life example of this class of problems is the investigation of climate response to perturbations. In this respect, it is crucial to determine what the linear response of a system is as a quantification of sensitivity. Alongside previous work, here we use the transfer operator formalism to study the response and sensitivity of a dynamical system undergoing perturbations. By projecting the transfer operator onto a suitable finite dimensional vector space, one is able to obtain matrix representations which determine finite Markov processes. Further, using perturbation theory for Markov matrices, it is possible to determine the linear and nonlinear response of the system given a prescribed forcing. Here, we suggest a methodology which puts the scope on the evolution law of densities (the Liouville/Fokker–Planck equation), allowing to effectively calculate the sensitivity and response of two representative dynamical systems.

Keywords: using markov; response; sensitivity; sensitivity using; response sensitivity

Journal Title: Journal of Statistical Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.