LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the recursive sequence xn+1=xn−4k+31+∏t=02xn−k+1t−k$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}} $$

Photo by jannerboy62 from unsplash

AbstractThe solution of the difference equationxn+1=xn−4k+31+∏t=02xn−k+1t−k,n=0,1,2,…,$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, $$ where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . ,… Click to show full abstract

AbstractThe solution of the difference equationxn+1=xn−4k+31+∏t=02xn−k+1t−k,n=0,1,2,…,$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, $$ where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . , is studied.

Keywords: left right; prod left; 02xn frac; frac left; right prod

Journal Title: Journal of Mathematical Sciences
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.