AbstractThe solution of the difference equationxn+1=xn−4k+31+∏t=02xn−k+1t−k,n=0,1,2,…,$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, $$ where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . ,… Click to show full abstract
AbstractThe solution of the difference equationxn+1=xn−4k+31+∏t=02xn−k+1t−k,n=0,1,2,…,$$ {x}_{n+1}=\frac{x_{n-\left(4k+3\right)}}{1+\prod_{t=0}^2{x}_{n-\left(k+1\right)t-k}},\kern0.5em n=0,1,2,\dots, $$ where x−(4k+3), x−(4k+2), . . . , x−1, x0 ∈ (0, ∞) and k = 0, 1, . . . , is studied.
               
Click one of the above tabs to view related content.