LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Recursive Sequence xn+1=xn−k+11+xnxn−1…xn−k$$ {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}} $$

Photo from archive.org

A solution of the following difference equation is investigated:xn+1=xn−k+11+xnxn−1…xn−k,n=0,1,2,…$$ {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}},n=0,1,2,\dots $$where x−(k+1); x−k; : : : ; x−1; x0 ???? (0;∞) and k = 0; 1; 2; : :… Click to show full abstract

A solution of the following difference equation is investigated:xn+1=xn−k+11+xnxn−1…xn−k,n=0,1,2,…$$ {x}_{n+1}=\frac{x_{n-\left(k+1\right)}}{1+{x}_n{x}_{n-1}\dots {x}_{n-k}},n=0,1,2,\dots $$where x−(k+1); x−k; : : : ; x−1; x0 ???? (0;∞) and k = 0; 1; 2; : : : .

Keywords: left right; right dots; recursive sequence; frac left; xnxn frac

Journal Title: Journal of Mathematical Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.