LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sharp Estimates of Linear Approximations by Nonperiodic Splines in Terms of Linear Combinations of Moduli of Continuity

Photo from wikipedia

Assume that σ > 0, r, μ ???? ℕ, μ ≥ r + 1, r is odd, p ???? [1,+∞], and f∈Wprℝ$$ f\kern0.5em \in \kern0.5em {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) $$. We construct linear… Click to show full abstract

Assume that σ > 0, r, μ ???? ℕ, μ ≥ r + 1, r is odd, p ???? [1,+∞], and f∈Wprℝ$$ f\kern0.5em \in \kern0.5em {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) $$. We construct linear operators Xσ,r,μ whose values are splines of degree μ and of minimal defect with knots kπσ,k∈ℤ$$ \frac{k\pi}{\sigma },k\in \mathrm{\mathbb{Z}} $$, such that f−Xσ,r,ufp≤πσrAr,02ω1frπσp+∑v=1u−r−1Ar,vωvfrπσp+πσrKrπr−∑v=0u−r−12vAr,v2r−μωμ−rfrπσp,$$ {\displaystyle \begin{array}{l}{\left\Vert f-{X}_{\sigma, r,u}(f)\right\Vert}_p\le {\left(\frac{\pi }{\sigma}\right)}^r\left\{\frac{A_r,0}{2}\left.{\upomega}_1\right|{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p+\sum \limits_{v=1}^{u-r-1}{A}_{r,v}{\omega}_v{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p\right\}\\ {}\kern9em +{\left(\frac{\pi }{\sigma}\right)}^r\left(\frac{{\mathcal{K}}_r}{\pi^r}-\sum \limits_{v=0}^{u-r-1}{2}^v{A}_{r,v}\right){2}^{r-\mu }{\omega}_{\mu -r}{\left({f}^{(r)},\frac{\pi }{\sigma}\right)}_p,\end{array}} $$ where for p = 1, . . . ,+∞, the constants cannot be reduced on the class Wprℝ$$ {W}_p^{(r)}\left(\mathrm{\mathbb{R}}\right) $$. Here Kr=4π∑l=0∞−1lr+12l+1r+1$$ {\mathcal{K}}_r=\frac{4}{\pi}\sum \limits_{l=0}^{\infty}\frac{{\left(-1\right)}^{l\left(r+1\right)}}{{\left(2l+1\right)}^{r+1}} $$ are the Favard constants, the constants Ar,ν are constructed explicitly, and ωv is a modulus of continuity of order ν. As a corollary, we get the sharp Jackson type inequalityf−Xσ,r,μfp≤Kr2σrω1frπσp.$$ {\left\Vert f-{X}_{\sigma, r,\mu }(f)\right\Vert}_p\le \frac{{\mathcal{K}}_r}{2{\sigma}^r}{\omega}_1{\left({f}^{(r)},\frac{\uppi}{\sigma}\right)}_p. $$

Keywords: left frac; frac sigma; sigma; right left; sigma right

Journal Title: Journal of Mathematical Sciences
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.