LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Multiferroism in PVDF with CoFe2O4 Nanoparticles

Photo from archive.org

Thin films of some polymer-ceramic nanomultiferroic composites (in 0–3 connectivity) of compositions (1-x) PVDF-xCoFe2O4 (x = 0.05, 0.1, 0.5) have been fabricated through a solution casting route. Based on X-ray diffraction pattern… Click to show full abstract

Thin films of some polymer-ceramic nanomultiferroic composites (in 0–3 connectivity) of compositions (1-x) PVDF-xCoFe2O4 (x = 0.05, 0.1, 0.5) have been fabricated through a solution casting route. Based on X-ray diffraction pattern and data, basic crystal structure and unit cell parameters were obtained. The surface morphology of the materials was studied using a scanning electron microscopy (SEM) technique. Structural investigation confirms the presence of a polymeric electro-active β-phase of matrix (PVDF) and nano filler spinel phase of the incorporated nano-ceramics. The observed SEM micrographs confirm that the nanoparticles are well distributed in the PVDF matrix without any agglomeration with a lesser spherulitic microstructure. The flexible nano-composites fabricated with polymer (PVDF) and CoFe2O4 provide high permittivity (relative dielectric constant) and low loss tangent. An impedance spectroscopy (IS) technique was employed to study the effect of grain and grain boundary in the resistive properties of the composite materials in terms of electric circuit. The study of AC conductivity as a function of frequency follows Jonscher’s power law. The improved conductivity and dielectric, magnetic, and measured first-order magnetoelectric coefficients suggest some promising applications in the embedded capacitors as well as in multifunctional devices.

Keywords: development multiferroism; pvdf cofe2o4; cofe2o4 nanoparticles; pvdf; multiferroism pvdf

Journal Title: Journal of Polymer Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.