LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of super-stretchable and electrical conductive membrane of spandex/multi-wall carbon nanotube/reduced graphene oxide composite

Photo from wikipedia

Hybrid conductive fillers (hybrids) are prepared through simultaneous chemical reduction of the graphene oxide and acid-treated multi-wall carbon nanotube in the presence of hydrazine. Subsequently, the thermoplastic spandex-based composite membranes… Click to show full abstract

Hybrid conductive fillers (hybrids) are prepared through simultaneous chemical reduction of the graphene oxide and acid-treated multi-wall carbon nanotube in the presence of hydrazine. Subsequently, the thermoplastic spandex-based composite membranes with different hybrids contents are fabricated by solution casting method. At 20 wt% loading of hybrids, the membrane displays both super-stretchability (387% of elongation at break) and good electrical conductivity (49.5 S cm−1). Further investigations of the electromechanical behaviour show that the strain sensitivity is dependent on hybrids content. Therefore, the as-prepared spandex/hybrids composite membranes are promising materials for the fabrication of wearable electronics and stretchable energy storage/conversion devices.

Keywords: graphene oxide; multi wall; carbon nanotube; spandex; wall carbon

Journal Title: Journal of Polymer Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.