LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Initiator-free preparation and properties of polystyrene-based plastic scintillators

Photo from wikipedia

A series of polystyrene-based scintillators have been prepared by thermal polymerization without any initiators. To investigate the influence of the primary additive and wavelength shifter on the performance of plastic… Click to show full abstract

A series of polystyrene-based scintillators have been prepared by thermal polymerization without any initiators. To investigate the influence of the primary additive and wavelength shifter on the performance of plastic scintillator, two primary additives and four wavelength shifters were added to the scintillators, respectively. The results showed that 2,5-diphenyloxazole (PPO) and 5-phenyl-2-[4-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole (POPOP) were the most adequate fluorescent dyes for initiator-free preparation of the polystyrene-based scintillators. The plastic scintillator containing 1% PPO and 0.02% POPOP possessed the highest fluorescence intensity. Initiator-containing polystyrene-based scintillator with the same concentration of PPO and POPOP (1% PPO, 0.02% POPOP and 0.01% AIBN) was also prepared. The light yield of the plastic scintillator without any initiators is 83.49% relative to the value of the standard sample EJ-200, which is higher 8% than that of initiator-containing plastic scintillator. Moreover, compared with the standard sample EJ-200 with a decay time of 2.09 s, the decay time of the initiator-free and initiator-containing plastic scintillator was 1.80s and 1.86 s, respectively.

Keywords: free preparation; initiator free; polystyrene based; scintillator; plastic scintillator

Journal Title: Journal of Polymer Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.