LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sol–gel based thermally stable mesoporous TiO2 nanomatrix for fiber optic pH sensing

Photo from wikipedia

AbstractThermally stable acid catalyzed mesoporous titania (TiO2) nanomatrices are obtained by sol–gel method for fiber optic pH sensing. These synthesized nanoparticles are annealed at 300 °C, at two time intervals i.e.,… Click to show full abstract

AbstractThermally stable acid catalyzed mesoporous titania (TiO2) nanomatrices are obtained by sol–gel method for fiber optic pH sensing. These synthesized nanoparticles are annealed at 300 °C, at two time intervals i.e., 1 h and 2 h, characterized with several analytical techniques such as FE-SEM/EDS, AFM, XRD, FTIR, TGA, and Brunauer–Emmett–Teller (BET) analysis. Microscopic analysis shows that synthesized nanoparticles have crack-free, dense and homogeneous surface with low surface roughness (4.4–5.9 nm). EDS mapping confirms the uniform distribution of Ti in all samples. XRD findings revealed the TiO2 anatase phase. BET analysis shows that the mesoporous synthesized TiO2 nanoparticles have surface areas 169 m2/g and average pore diameter 39.2 Å. However, surface area is decreased to 113 and 102 m2/g and average pore diameter increased up to 62.36 and 68.18 Å after 1 h and 2 h heat treatment, respectively. Furthermore, the sensing activity of phenolphthalein (phph) doped mesoporous TiO2 nanoparticles/matrix is found to be high at pH 12 without any leaching/cracking.

Keywords: tio2; fiber optic; optic sensing; sol gel; mesoporous tio2

Journal Title: Journal of Sol-Gel Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.