LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method assisted with activated carbon for proton-conducting solid oxide fuel cell application

Photo by eprouzet from unsplash

AbstractThe electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel… Click to show full abstract

AbstractThe electrical conductivity and electrochemical performance of a La0.6Sr0.4CoO3-δ (LSC) cathode produced by a modified citrate-EDTA sol-gel method assisted with activated carbon are characterized for a proton-conducting solid oxide fuel cell (H+ −SOFC) application at intermediate temperature. Thermogravimetric analysis revealed that the decomposition of the unrequired intermediate compounds in the precalcined powder was completed at 800 °C. A single LSC perovskite phase was formed at a calcination temperature of 900 °C, as confirmed by X-ray diffraction analysis. The particle size, crystallite size, and BET-specific surface area of the powder are 219–221 nm, 18 nm, and 9.87 m2 g−1, respectively. The high index value of the extent of agglomeration (5.53) showed that the powder was barely agglomerated. Bulk LSC sintered at 1200 °C for 2 h showed the highest direct-current electrical conductivity (σd.c) compared to that of bulk LSC sintered at 1000 °C and 1100 °C. The value of σd.c was affected by the density and porosity of the sintered samples. The area specific resistance (ASR) of screen-printed LSC working on a proton conductor of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) decreased from 5.0 Ω cm2–0.06 Ω cm2 as the temperature increased from 500 °C to 800 °C with an activation energy of 1.079 eV. Overall, in this work, the LSC material produced with the aid of activated carbon meet the requirements for the application as a cathode in an intermediate temperature H+-SOFC.

Keywords: sol gel; activated carbon; lsc

Journal Title: Journal of Sol-Gel Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.