This study aimed to utilize laboratory-prepared nano-silica (NS) and nano-alumina (NA) as low-cost nano-oxides additions for improving the mechanical properties and thermal resistance of hardened ordinary Portland cement (OPC) pastes.… Click to show full abstract
This study aimed to utilize laboratory-prepared nano-silica (NS) and nano-alumina (NA) as low-cost nano-oxides additions for improving the mechanical properties and thermal resistance of hardened ordinary Portland cement (OPC) pastes. NS was synthesized from rice husk ash in the absence of any surfactant, while NA was synthesized from AlCl3 in the presence of CTAB as a surfactant. The average particle sizes of synthesized NS and NA were 30 and 40 nm, respectively. Nano-silica or nano-alumina was added to OPC as a single phase with different ratios of 0.5, 1, 2 and 3 by mass % of OPC. The physico-chemical characteristics of different OPC-NS and OPC-NA hardened pastes were studied after 1, 3, 7, 14, 28 and 90 days of hydration. The resistance of the hardened composites for firing was evaluated for specimens cured for 28 days under tap water and then fired at 300, 600 and 800 °C for 3 h. The fired specimens were cooled by two methods: gradual cooling and rapid cooling. The compressive strength test was performed for all mixes at each firing temperature. The compressive strength results revealed that the optimum addition of NS is 1, whereas the optimum addition of NA is 0.5 by mass % of OPC. XRD, TG/DTG and SEM results indicated that ill-crystalline and nearly amorphous C–S–H, C–A–S–H and C–A–H were the main hydration products.
               
Click one of the above tabs to view related content.