LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes

Photo by a2eorigins from unsplash

This paper examines the rheological behavior of water (60%vol.)–ethylene glycol (40%vol.) mixture in the presence of functionalized multi-walled carbon nanotubes. At the first, the viscosity of various samples was measured… Click to show full abstract

This paper examines the rheological behavior of water (60%vol.)–ethylene glycol (40%vol.) mixture in the presence of functionalized multi-walled carbon nanotubes. At the first, the viscosity of various samples was measured at shear rates ranging from 6.115 to 73.38 s−1 and temperature range of 25–50 °C. Then, using the experimental data, some correlations were proposed to predict the viscosity of the nanofluid. Viscosity measurements at different shear rates revealed that all nanofluid samples were non-Newtonian power law fluid. Findings showed that consistency index increased along with volume fraction, while it decreased with increasing temperature. Moreover, the values of power law index were always less than 1, indicating shear thinning behavior.

Keywords: behavior water; mixture presence; functionalized multi; ethylene glycol; presence functionalized; rheological behavior

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.