LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flame retardancy and thermal degradation mechanism of calcium alginate/CaCO3 composites prepared via in situ method

Photo from wikipedia

The calcium alginate/CaCO3 composites were prepared via in situ method, and their flame retardancy and thermal degradation mechanism were investigated. The composites as-prepared were analyzed by the scanning electron microscopy… Click to show full abstract

The calcium alginate/CaCO3 composites were prepared via in situ method, and their flame retardancy and thermal degradation mechanism were investigated. The composites as-prepared were analyzed by the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis (TG), vertical burning (UL-94), cone calorimeter (CONE) and X-ray diffraction (XRD). The SEM demonstrated that the inorganic calcium salt in the composites had great influence on the morphology of materials. The TG results indicated the thermal stability of the composites was remarkably improved by 70 °C, compared with that of the calcium alginate. The combustion behaviors of the materials were assessed by CONE. In comparison with those of the calcium alginate, the peak heat release rate and total heat release of the composites decreased by 40.42 and 62.59%, respectively. The different degradation mechanisms of the calcium alginate and the composites were first proposed in detail based on the TG, XRD and SEM results. The composites exhibited excellent thermal stability and flame retardancy, which is promising to be developed for the application as flame-retardant materials in the future.

Keywords: calcium; composites prepared; calcium alginate; flame retardancy

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.