LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM)

Photo from wikipedia

Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal… Click to show full abstract

Due to the widespread use of rarefied gas flow in micro-porous media in industrial and engineering problems, a pore-scale modeling of rarefied gas flow through two micro-porous media with fractal geometries is presented, using lattice Boltzmann method. For this purpose, square- and circular-based Sierpinski carpets with fractal geometries are selected due to their inherent behavior for real porous media. Diffusive reflection slip model is used and developed for these porous media through this study. With this respect, the planar Poiseuille flow is selected as a benchmark and validated with the literature. The effect of Knudsen number (Kn) on the permeability is investigated and compared in each geometry. It is shown that as Knudsen number increases, the permeability will increase due to the gas slippage effect on the solid blocks. In addition, it is observed that the permeability is more sensitive to the gaseous flow behavior at the slip and beginning of transition flow regimes. At last, the permeability relationship with Knudsen number is presented with a higher coefficient of determination for both fractal geometries, showing that this relation is logarithmic.

Keywords: gas flow; rarefied gas; micro porous; porous media; flow

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.