LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector

Photo from wikipedia

In this research, three different volume concentrations (ϕ = 0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO… Click to show full abstract

In this research, three different volume concentrations (ϕ = 0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO nanoparticles with the average diameter of 50 nm and 27 nm were dispersed in distilled water. The thermal conductivity and viscosity of prepared nanofluids are measured for different temperatures by using KD2 Pro thermal property analyzed and Brookfield viscometer, respectively. The effects of nanofluids on the thermal, electrical and overall efficiency of photovoltaic thermal (PVT) solar collector are also studied. The experimental results revealed that the thermal conductivity and viscosity increase with the increase in percentage volume concentration and viscosity decreases with the increase in temperature. Furthermore, the obtained maximum thermal and electrical efficiencies of a PVT solar collector for 0.2% volume concentration of hybrid nanofluids are 82% and 15%, respectively, at peak solar radiation. The highest overall efficiency of a PVT collector with .2% volume concentration of hybrid nanofluid was 97% at peak solar radiation. Results recommend that nanofluids can be used as a heat transfer in PVT solar collector.

Keywords: thermal conductivity; conductivity viscosity; collector; solar collector

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.