LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laminar flow and heat transfer of water/NDG nanofluid on tube banks with rhombic cross section with different longitudinal arrangements

Photo by a2eorigins from unsplash

In present numerical study, water/NDG (nitrogen-doped graphene) nanofluid flow in different arrangements of rhombic tube banks is investigated in a two-dimensional space. Water/NDG nanofluid is considered in mass fractions of… Click to show full abstract

In present numerical study, water/NDG (nitrogen-doped graphene) nanofluid flow in different arrangements of rhombic tube banks is investigated in a two-dimensional space. Water/NDG nanofluid is considered in mass fractions of 0, 1, 2, 4 and 6% and Re numbers of 10, 100 and 450 as cooling fluid. The arrangements of tube banks are considered as ET (equilateral triangle), RS (rotated square) and ES (equal spacing) arrangements. Results revealed that the enhancement of mass fraction causes heat transfer enhancement which is due to the increase in thermal conductivity coefficient of cooling nanofluid compared to base fluid. The increase in Re causes the enhancement of average Nu which is due to better mixture of fluid layers with the enhancement of fluid velocity in higher Re which causes the reduction in temperature gradients among fluid layers away from tubes and homogeneous temperature distribution in these areas. Among investigated arrangements, RS has the highest Nu. Also, ET arrangement, compared to ES arrangement, has higher Nu. In all of the studied arrangements, the increase in Re causes the reduction in friction factor and the maximum values of friction factor are related to RS and ET arrangements, respectively.

Keywords: tube banks; ndg nanofluid; water ndg; heat transfer

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.