LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries

Photo from wikipedia

Batteries, especially lithium-ion ones, are the main energy sources of electric vehicles. In order to remove the generated heat in these batteries, passive cooling systems such as those employing phase… Click to show full abstract

Batteries, especially lithium-ion ones, are the main energy sources of electric vehicles. In order to remove the generated heat in these batteries, passive cooling systems such as those employing phase change materials (PCMs) can be used, without any energy consumption. The main drawback of conventional PCMs is their low thermal conductivity, which can be solved by adding conductive additives to pure PCM. In this study, nine passive battery thermal management systems (BTMSs) based on paraffin wax as pure PCM, and copper foam as conductive additive, but with nine different amounts (from 1 to 9 vol%), are numerically simulated to reveal the role of additive content. The results show that the addition of metal foam greatly influences the time evolution of PCM liquid fraction. It is turned out that the addition of 6 vol% copper foam can create the best cooling effect and preserves the cell in the desired temperature range. In fact, adding more than this value can significantly reduce the heat absorption capacity of BTMS and makes the BTMS unreliable.

Keywords: foam; ion; metal foam; thermal management

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.