The formation of nanolaminated Cr2AlC MAX phase by using solid-state synthesis route has been investigated through thermal analysis technique. The mixture of chromium (Cr), aluminum (Al) and graphite (C) in… Click to show full abstract
The formation of nanolaminated Cr2AlC MAX phase by using solid-state synthesis route has been investigated through thermal analysis technique. The mixture of chromium (Cr), aluminum (Al) and graphite (C) in 2:1.4:1 was subjected to differential thermal analysis in an argon atmosphere and heated up to 1250 °C, at multiple heating rates (10, 20, 30, 40 °C min−1). Two endothermic peaks (~ 666 °C and ~ 1053 °C) are observed during the synthesis of Cr2AlC MAX phase. The formation of Cr2AlC is also confirmed through XRD, FESEM, HR-TEM and SAED analysis. The kinetic triplets (activation energy, pre-exponential factor and reaction mechanism) involved during the synthesis of Cr2AlC were estimated. The activation energy and reaction mechanism were determined by using iso-conversional model-free methods (KAS, FWO and FR methods) and integral master plot method, respectively. The results indicated that F2 (second-order) reaction mechanism dominates the formation of Cr2AlC MAX phase.
               
Click one of the above tabs to view related content.