LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dehydration of rhyolite: activation energy, water speciation and morphological investigation

Photo from wikipedia

Rhyolite is an extrusive, igneous rock of aluminosilicate composition that upon rapid cooling forms obsidian. Obsidian is amorphous and contains limited water portions ( 5 mass%). In the current study, kinetics… Click to show full abstract

Rhyolite is an extrusive, igneous rock of aluminosilicate composition that upon rapid cooling forms obsidian. Obsidian is amorphous and contains limited water portions (< 2 mass%); however, secondary hydration turns it either to perlite (H2O ≈ 2–5 mass%) or pitchstone (> 5 mass%). In the current study, kinetics of hydrous rhyolite dehydration were investigated by thermogravimetry up to 1000 °C, at heating rates of 2.5, 5, 10 and 20 °C min−1 and under inert atmosphere. The mass loss is approx. 7.6 mass%, occurs along wide temperature range (100–800 °C) and is solely attributed to the release of molecular water ((H2O)m) and hydroxyl groups (OH). Rhyolite dehydration was considered as a solid-state reaction, and the apparent activation energy (Ea) of dehydration was calculated throughout the whole conversion range (a) by applying the isoconversional Friedman and advanced Vyazovkin methods. Both methods revealed inverse sigmoid trend in Ea values versus conversion degree, possessing almost stable value of 61 ± 5 kJ mol−1 for Friedman method and 59.44 kJ mol−1 for Vyazovkin method on conversion range between 0.25 and 0.75, and sharp increase at higher conversion degree. The intensive change in Ea during dehydration progression is attributed to the change in releasing species (from (H2O)m to OH). Raman and FT-IR spectroscopy analyses of raw and partially dehydrated samples at different stages revealed that up to 300 °C mainly (H2O)m is diffused out of the material causing sample enrichment in OH groups. OH release, which occurs at relatively higher temperature, is accompanied by increase in apparent Ea value of dehydration. Concerning microstructure of raw rhyolite, it exhibits a network of micro-fractures which serve as water release routes. Upon heating, more and wider fractures are created. At 600 °C, fractures merging occurs creating voids, which constitute forerunners of the expansion phenomenon. Further temperature increase causes material softening allowing local plastic deformation, which under the high pressure that is exerted by the releasing water species incites the formation of large cavities and fractures, initiating expansion.

Keywords: water; activation energy; mass; dehydration

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.