LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear response for a general form of thermoelasticity equation in mediums under the effect of temperature-dependent properties and short-pulse heating

Photo from wikipedia

This article presents an algorithm for nonlinear transient response of an elastic body with temperature-dependent material features in a large deformation domain exposed to short-pulse heating. The principal target of… Click to show full abstract

This article presents an algorithm for nonlinear transient response of an elastic body with temperature-dependent material features in a large deformation domain exposed to short-pulse heating. The principal target of this paper is employing a general form of thermoelasticity equation, including temperature and strain rate-dependent model using finite strain theory (FST). A thermally nonlinear study is conducted considering a significant gradient of temperature in comparison with the reference temperature. Based on FST, to present the couple equations of energy and motion in the reference medium, the second Piola–Kirchhoff stress and the Lagrangian strain–displacement are used. The obtained equations improved integrating temperature and strain rate-dependent technique and then solved using a Hermitian transfinite element technique. Wave propagation analysis under impulsive thermal loadings is also discussed in this work. Analyzing the phase lag in second sound waves and the impacts of temperature dependency of the medium properties are conducted. Based on the obtained results, the temperature dependency of the materials features has a significant influence on the thermoelastic transient responses. Results illustrate an absorbing feature of wave propagation. In addition, it is observed that there is a remarkable difference in the results obtained from using the general form of thermoelasticity and that of obtained from classic model.

Keywords: form thermoelasticity; temperature dependent; temperature; general form

Journal Title: Journal of Thermal Analysis and Calorimetry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.