Context Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood… Click to show full abstract
Context Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity. Objectives We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results. Methods We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity. Results A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity. Conclusions Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.
               
Click one of the above tabs to view related content.