Toxin–antitoxin (TA) systems of Mycobacterium tuberculosis (Mtb) is a prerequisite for the bacterium to survive in extreme conditions. Antimicrobial peptides inhibiting the formation of these complexes provide a novel strategy… Click to show full abstract
Toxin–antitoxin (TA) systems of Mycobacterium tuberculosis (Mtb) is a prerequisite for the bacterium to survive in extreme conditions. Antimicrobial peptides inhibiting the formation of these complexes provide a novel strategy for TB drug discovery process. Absence of TA genes in human, makes these systems as an attractive target for drug development. In this study using Peptiderive server, we have derived a number of potential inhibitory peptides for nine TA complexes—VapBC3, VapBC5, VapBC11, VapBC15, VapBC26, VapBC30, RelBE2, RelJK, MazEF4 of Mtb. We have studied about the common interacting toxin residues with the antitoxin and with the derived peptide. Further, using Cluspro server, we compared the binding efficacy of the in silico derived peptides with the published potential peptides for the toxins VapC26, VapC30 and MazF. Thus, these in silico derived peptides would serve as basis for developing peptide based therapeutics for TA complexes of Mtb.
               
Click one of the above tabs to view related content.