LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An expressive dissimilarity measure for relational clustering using neighbourhood trees

Photo by campaign_creators from unsplash

Clustering is an underspecified task: there are no universal criteria for what makes a good clustering. This is especially true for relational data, where similarity can be based on the… Click to show full abstract

Clustering is an underspecified task: there are no universal criteria for what makes a good clustering. This is especially true for relational data, where similarity can be based on the features of individuals, the relationships between them, or a mix of both. Existing methods for relational clustering have strong and often implicit biases in this respect. In this paper, we introduce a novel dissimilarity measure for relational data. It is the first approach to incorporate a wide variety of types of similarity, including similarity of attributes, similarity of relational context, and proximity in a hypergraph. We experimentally evaluate the proposed dissimilarity measure on both clustering and classification tasks using data sets of very different types. Considering the quality of the obtained clustering, the experiments demonstrate that (a) using this dissimilarity in standard clustering methods consistently gives good results, whereas other measures work well only on data sets that match their bias; and (b) on most data sets, the novel dissimilarity outperforms even the best among the existing ones. On the classification tasks, the proposed method outperforms the competitors on the majority of data sets, often by a large margin. Moreover, we show that learning the appropriate bias in an unsupervised way is a very challenging task, and that the existing methods offer a marginal gain compared to the proposed similarity method, and can even hurt performance. Finally, we show that the asymptotic complexity of the proposed dissimilarity measure is similar to the existing state-of-the-art approaches. The results confirm that the proposed dissimilarity measure is indeed versatile enough to capture relevant information, regardless of whether that comes from the attributes of vertices, their proximity, or connectedness of vertices, even without parameter tuning.

Keywords: data sets; dissimilarity measure; measure relational; relational clustering; dissimilarity

Journal Title: Machine Learning
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.