LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interpolation in $$H^{p}$$Hp spaces over the right half-plane

Photo from archive.org

For a certain class of sequences with multiple terms $$\{\underbrace{\lambda _1,\lambda _1,\ldots ,\lambda _1}_{\mu _1 - times}, \underbrace{\lambda _2,\lambda _2,\ldots ,\lambda _2}_{\mu _2 - times},\ldots \}$${λ1,λ1,…,λ1⏟μ1-times,λ2,λ2,…,λ2⏟μ2-times,…} in the right half-plane… Click to show full abstract

For a certain class of sequences with multiple terms $$\{\underbrace{\lambda _1,\lambda _1,\ldots ,\lambda _1}_{\mu _1 - times}, \underbrace{\lambda _2,\lambda _2,\ldots ,\lambda _2}_{\mu _2 - times},\ldots \}$${λ1,λ1,…,λ1⏟μ1-times,λ2,λ2,…,λ2⏟μ2-times,…} in the right half-plane $$\mathbb {C}_+$$C+, and a doubly-indexed sequence $$\{d_{n,k}{:}\, n\in \mathbb {N},\, k=0,1,\ldots ,\mu _n-1\}$${dn,k:n∈N,k=0,1,…,μn-1} of complex numbers satisfying certain growth conditions, we consider an interpolation problem $$\begin{aligned} f^{(k)}(\lambda _n)=d_{n,k}\qquad n\in \mathbb {N},\quad k=0,1,\ldots ,\mu _n-1, \end{aligned}$$f(k)(λn)=dn,kn∈N,k=0,1,…,μn-1,where f is a bounded analytic function in $$\mathbb {C}_+$$C+, belonging to the Hardy spaces $$H^1 (\mathbb {C}_+)$$H1(C+) and $$H^2 (\mathbb {C}_+)$$H2(C+).

Keywords: interpolation spaces; half plane; right half; spaces right; mathbb

Journal Title: Periodica Mathematica Hungarica
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.