This study is concerned with the complete design, analysis, functional prototyping and flight testing of a novel morphing wing system for use in a relatively small ( Click to show full abstract
This study is concerned with the complete design, analysis, functional prototyping and flight testing of a novel morphing wing system for use in a relatively small (<10 kg) unmanned aerial vehicles (UAVs). To achieve improved flight performance with limited weight penalty, camber-adjustable morphing wing was designed using flexible servomotor-actuated mechanisms. The current design, which was originally conceptualized by Monner et al. (Smart structures and materials: industrial and commercial applications of smart structures technologies. Proceedings of SPIE 3326, pp 60–70, 1998), ensures that the airfoil shape of the wing is able to continuously morph between the non-cambered and the cambered configurations. The morphing function of the wing is achieved using a flexible-rib system driven by onboard servomotor-rocker. This unique design of a flexible-rib assembly enables the airfoil of the wing to be accurately morphed to the target configuration. With the aid of aerodynamic and finite element analyses, the flexible rib assembly performance and structural integrity are evaluated and assessed. The design process was in compliance with aircraft design standards, including the Federal Aviation Regulations—Part 23. The functional prototype of the flexible rib morphing-wing enabled UAV was manufactured and assembled and a test plane was ground tested. The success of the entire project, including flight testing of the flexible rib assembly is summarized in this paper.
               
Click one of the above tabs to view related content.