LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of a Queueing Model with Batch Markovian Arrival Process and General Distribution for Group Clearance

Photo from wikipedia

In this paper we consider a single server queueing model with under general bulk service rule with infinite upper bound on the batch size which we call group clearance. The… Click to show full abstract

In this paper we consider a single server queueing model with under general bulk service rule with infinite upper bound on the batch size which we call group clearance. The arrivals occur according to a batch Markovian point process and the services are generally distributed. The customers arriving after the service initiation cannot enter the ongoing service. The service time is independent on the batch size. First, we employ the classical embedded Markov renewal process approach to study the model. Secondly, under the assumption that the services are of phase type, we study the model as a continuous-time Markov chain whose generator has a very special structure. Using matrix-analytic methods we study the model in steady-state and discuss some special cases of the model as well as representative numerical examples covering a wide range of service time distributions such as constant, uniform, Weibull, and phase type.

Keywords: queueing model; group clearance; model; process; service; batch

Journal Title: Methodology and Computing in Applied Probability
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.