LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HUCMNCs protect vascular endothelium and prevent ISR after endovascular interventional therapy for vascular diseases in T2DM rabbits

Photo by danielkcheung from unsplash

The therapeutic effect of transplantation of human umbilical cord blood cell-derived mononuclear cells (HUCMNCs) on treating in-stent restenosis (ISR) after endovascular interventional therapy (EIT) was evaluated in preclinical rabbit model… Click to show full abstract

The therapeutic effect of transplantation of human umbilical cord blood cell-derived mononuclear cells (HUCMNCs) on treating in-stent restenosis (ISR) after endovascular interventional therapy (EIT) was evaluated in preclinical rabbit model of type 2 diabetes mellitus (T2DM)-related peripheral artery disease (PAD). HUCMNCs were transplanted to T2DM rabbits subjected to femoral artery occlusion surgery and received EIT. Serum concentration of soluble vascular endothelial cadherin (VE-cad) and plasma concentration of lipoprotein-associated phospholipase A2 (Lp-PLA2) were determined with enzyme-linked immunosorbent assay before and after the transplantation. The injury and the recovery of right femoral artery at stenting site were evaluated with Hematoxylin and Eosin (HE) staining. HUCMNCs purified from umbilical cord blood were 100% CD45+ and 96.5% CD34− with round or oval morphology and adherent growth pattern. The soluble VE-cad and Lp-PLA2 were significantly attenuated after HUCMNC transplantation. The intimal area and the ratio between intimal area and medium film area in the dilated occlusion site were also dramatically decreased 4 weeks after receiving HUCMNCs. HUCMNC transplantation is effective in protecting vascular endothelial function and preventing ISR after EIT in T2DM rabbits suffering from PAD.

Keywords: endovascular interventional; t2dm rabbits; transplantation; interventional therapy; isr endovascular

Journal Title: Molecular and Cellular Biochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.