LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

All-trans retinoic acid increases NF-κB activity in PMA-stimulated THP-1 cells upon unmethylated CpG challenge by enhancing cell surface TLR9 expression

Photo from wikipedia

An active metabolite of vitamin A, all-trans retinoic acid (ATRA), is known to exert immunomodulatory functions. This study investigates the possible immune potentiating effect of ATRA on NF-κB activity in… Click to show full abstract

An active metabolite of vitamin A, all-trans retinoic acid (ATRA), is known to exert immunomodulatory functions. This study investigates the possible immune potentiating effect of ATRA on NF-κB activity in human monocytic THP-1 cells after exposure to unmethylated CpG DNA ODN2006. We observed that challenge with ODN2006 significantly enhanced the NF-κB activity of PMA-differentiated THP-1 cells. ATRA synergistically enhanced NF-κB activity of cells, in a concentration- and time-dependent manner. The enhanced NF-κB activity of PMA-differentiated THP-1 cells after ODN2006 challenge was dependent on the RAR/RXR pathway. To determine the mechanism involved in increasing in the NF-κB activity of stimulated THP-1 cells, we examined the effects of PMA and ATRA on the expression of TLR9 (a receptor of ODN2006) in THP-1 cells. PMA treatment significantly enhanced both the intracellular and cell surface expression of TLR9, while ATRA alone showed no effect. However, ATRA synergistically enhanced the cell surface TLR9 expression of PMA-differentiated cells. To determine whether the ATRA-enhanced NF-κB activity is due to the enhanced cell surface TLR9 expression, we examined NF-κB activity after treatment with anti-TLR9 blocking antibody. Results revealed that the anti-TLR9 antibody treatment almost completely reverses the ATRA-enhanced NF-κB activity, suggesting that ATRA enhances NF-κB activity through upregulation of the cell surface TLR9 expression in PMA-differentiated and unmethylated CpG challenged THP-1 cells.

Keywords: expression; cell surface; activity; thp cells

Journal Title: Molecular and Cellular Biochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.