LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inhibition of NF-κB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia

Photo from wikipedia

Neuroinflammation is a key feature of cerebral complication which is associated with diabetes mellitus (DM). Inducible nitric oxide synthase (iNOS) is implicated in the pathogenesis of neuroinflammation. However, how iNOS… Click to show full abstract

Neuroinflammation is a key feature of cerebral complication which is associated with diabetes mellitus (DM). Inducible nitric oxide synthase (iNOS) is implicated in the pathogenesis of neuroinflammation. However, how iNOS facilitates the development of inflammation in brain is still unidentified. The aim of the present study was to investigate the association of iNOS and neuroinflammation in diabetic mice, and elucidate the potential mechanisms underlying aminoguanidine (AG), the selective inhibitor of iNOS, protected neurons against inflammation in diabetic mice. In present experiment, diabetic mice model were established by a single intraperitoneal injection of streptozotocin (STZ). AG was administered to diabetic mice for ten weeks after this disease induction. Then we measured iNOS activity in the serum and brain, detected the glial fibrillary acidic protein (GFAP) and ionised calcium binding adaptor molecule-1 (Iba-1) expressions in the brain. Moreover, nuclear factor-kappa B (NF-κB) in cytoplasm and nucleus were tested by IP and WB. Results revealed that high expression of iNOS in serum and brain could be reversed by AG treatment. Furthermore, AG could also inhibit GFAP and Iba-1 expressions, and NF-κB nuclear translocation by inhibiting it from binding to iNOS in cytoplasm. Our findings indicated that iNOS can combine with NF-κB in cytoplasm and promote its nuclear transfer in diabetic mice. Furthermore, AG decreased neuroinflammation through inhibiting iNOS activity and reducing NF-κB nuclear translocation by promoting its dissociation with iNOS in cytoplasm.

Keywords: inhibition activity; diabetic mice; brain; neuroinflammation

Journal Title: Metabolic Brain Disease
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.