LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

L-3-n-butylphthalide attenuates cognitive deficits in db/db diabetic mice

Photo from archive.org

Numerous epidemiological studies have shown that diabetes mellitus (DM) is associated with dementia and cognition decline. However, there is currently no effective treatment for diabetes-induced cognitive dysfunction. The neuroprotective effect… Click to show full abstract

Numerous epidemiological studies have shown that diabetes mellitus (DM) is associated with dementia and cognition decline. However, there is currently no effective treatment for diabetes-induced cognitive dysfunction. The neuroprotective effect of L-3-n-butylphthalide (L-NBP) has been demonstrated in vascular dementia animal models. The purpose of this study was to determine whether L-NBP can ameliorate cognitive deficits in db/db mice, a model of obesity and type 2 diabetes. The mice were administered with vehicle or L-NBP (120 mg/kg) by gavage daily for 6 weeks. Then, Morris water maze tasks were performed, and hippocampal LTP was recorded in vivo. Next, the synaptic structure of the CA1 hippocampus region was investigated via electron microscopy. Finally, the expression levels of MDA, SOD, 8-OHdG, and NADPH oxidase subunits gp91 and p67, as well as the expression of NF-κB p65, TNF-α, IL-1β and caspase-3 were measured by Western blot, RT-PCR and ELISA. Treatment with L-NBP significantly attenuated the learning and memory deficits in db/db mice. Concomitantly, L-NBP also increased hippocampus synaptic plasticity, characterized by an enhanced in vivo LTP, and suppressed oxidative stress, as indicated by increased SOD activity and decreased MDA, 8-OHdG, and NADPH oxidase subunits p67 and gp91. L-NBP also significantly decreased NF-κB p65, TNF-α, IL-1βand caspase-3 levels in the hippocampus. L-NBP significantly ameliorated cognitive decline in type 2 diabetic mice, and this effect was accompanied by an improvement in hippocampal plasticity and an amelioration of oxidative stress, inflammation and apoptosis cascades. Thus, L-NBP may be a promising therapeutic agent against DM-mediated cognitive dysfunction.

Keywords: cognitive deficits; microscopy; butylphthalide attenuates; deficits diabetic; diabetic mice; attenuates cognitive

Journal Title: Metabolic Brain Disease
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.