LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Roflumilast ameliorates cognitive impairment in APP/PS1 mice via cAMP/CREB/BDNF signaling and anti-neuroinflammatory effects

Photo by timothyhalesbennett from unsplash

Phosphodiesterase type 4 (PDE4) inhibitors can prevent the breakdown of the second messenger cyclic adenosine monophosphate (cAMP) and improve cognitive performances in several animal models of cognition. However, the clinical… Click to show full abstract

Phosphodiesterase type 4 (PDE4) inhibitors can prevent the breakdown of the second messenger cyclic adenosine monophosphate (cAMP) and improve cognitive performances in several animal models of cognition. However, the clinical development of PDE4 inhibitors has been seriously hampered by severe side effects, such as vomiting and nausea. In this study, we investigated the effect and mechanism of roflumilast, an FDA-approved PDE4 inhibitor for treatment of chronic obstructive pulmonary disease (COPD), on learning and memory abilities in the APP/PS1 mouse model of Alzheimer’s disease (AD). APP/PS1 transgenic mice received 3 intragastric doses of roflumilast (0.1, 0.2 and 0.4 mg/kg) daily for 3 weeks followed by behavioral tests. Chronic administration of roflumilast significantly improved the learning and memory abilities of APP/PS1 transgenic mice in the novel object recognition task, Morris water maze, and the step-down passive avoidance task. In addition, roflumilast increased the cAMP, phosphorylated cAMP response-element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) levels, and reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) p65, and proinflammatory cytokine (IL-6, TNF-a and IL-1β) levels in the hippocampus of APP/PS1 transgenic mice. In conclusion, these findings suggest that roflumilast can enhance cognitive function in APP/PS1 transgenic mice, which may be related to its stimulation of the cAMP/CREB/BDNF pathway and anti-neuroinflammatory effects.

Keywords: creb; app ps1; camp; mice

Journal Title: Metabolic Brain Disease
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.