LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amyloid Beta 25–35 induces blood-brain barrier disruption in vitro

Photo from wikipedia

The amyloid β-peptide (Aβ) is transported across the blood-brain barrier (BBB) by binding with the receptor for advanced glycation end products (RAGE). Previously, we demonstrated that the Aβ fraction 25–35… Click to show full abstract

The amyloid β-peptide (Aβ) is transported across the blood-brain barrier (BBB) by binding with the receptor for advanced glycation end products (RAGE). Previously, we demonstrated that the Aβ fraction 25–35 (Aβ25–35) increases RAGE expression in the rat hippocampus, likely contributing to its neurotoxic effects. However, it is still debated if the interaction of Aβ with RAGE compromises the BBB function in Alzheimer’ disease (AD). Here, we evaluated the effects of Aβ25–35 in an established in vitro model of the BBB. Rat brain microvascular endothelial cells (rBMVECs) were treated with 20 μM active Aβ25–35 or the inactive Aβ35–25 (control), for 24 h. Exposure to Aβ25–35 significantly decreased cell viability, increased cellular necrosis, and increased the production of reactive oxygen species (ROS), which triggered a decrease in the enzyme glutathione peroxidase when compared to the control condition. Aβ25–35 also increased BBB permeability by altering the expression of tight junction proteins (decreasing zonula occludens-1 and increasing occludin). Aβ25–35 induced monolayer disruption and cellular disarrangement of the BBB, with RAGE being highly expressed in the zones of disarrangement. Together, these data suggest that Aβ25–35-induces toxicity by compromising the functionality and integrity of the BBB in vitro. Graphical abstract Aβ25-35 induces BBB dysfunction in vitro, wich is likely mediated by OS and ultimately leads to disruption of BBB integrity and cell death Aβ25-35 induces BBB dysfunction in vitro, wich is likely mediated by OS and ultimately leads to disruption of BBB integrity and cell death

Keywords: blood brain; disruption; bbb; vitro; brain; brain barrier

Journal Title: Metabolic Brain Disease
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.