LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Captopril exhibits protective effects through anti-inflammatory and anti-apoptotic pathways against hydrogen peroxide-induced oxidative stress in C6 glioma cells.

Photo from wikipedia

Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors have reduced oxidative damage in the central nervous system (CNS). Accumulating evidence have also demonstrated that captopril, an ACE inhibitor, has… Click to show full abstract

Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors have reduced oxidative damage in the central nervous system (CNS). Accumulating evidence have also demonstrated that captopril, an ACE inhibitor, has protective effects on the CNS. However, its effects on hydrogen peroxide (H2O2)-induced oxidative damage in glial cells and interaction with the inflammatory system are still uncertain. Therefore, this study was aimed to investigate the protective effect of captopril on glial cell damage after H2O2-induced oxidative stress involved in the inflammatory and apoptotic pathways. The control group was without any treatment, and the H2O2 group was treated with 0.5 mM H2O2 for 24 h. The captopril group was treated with various concentrations of captopril for 24 h. The captopril + H2O2 group was pre-treated with captopril for 1 h and then exposed to 0.5 mM H2O2 for 24 h. In the captopril + H2O2 group, captopril at all concentrations significantly increased the cell viability in C6 cells. It also significantly increased the TAS and decreased the TOS levels which are an indicator of oxidative stress. Moreover, captopril significantly reduced the inflammation markers including NF-kB, IL-1 β, COX-1, and COX-2 levels. Flow cytometry results also exhibited that captopril pretreatment significantly decreased the apoptosis rate. Besides, captopril significantly reduced apoptotic Bax and raised anti-apoptotic Bcl-2 protein levels. In conclusion, captopril has protective effects on C6 cells after H2O2-induced oxidative damage by inhibiting oxidative stress, inflammation, and apoptosis. However, further studies need to be conducted to evaluate the potential of captopril as a neuroprotective agent.

Keywords: h2o2; induced oxidative; captopril; oxidative stress; protective effects

Journal Title: Metabolic brain disease
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.