Effect of viscoelastic bed on the hydroelastic response analysis of very large floating structures is studied using the linear water wave theory and small amplitude structural response in finite water… Click to show full abstract
Effect of viscoelastic bed on the hydroelastic response analysis of very large floating structures is studied using the linear water wave theory and small amplitude structural response in finite water depth. The floating structure is modeled using Euler–Bernoulli beam equation and the bottom bed is assumed to be viscoelastic in nature and is based on the Voigt’s model. The dispersion relation, phase speed and response amplitude of the floating structure as well as viscoelastic bed surface, pressure distribution along water depth are analyzed to study the effect of viscoelastic bed parameters, flexural rigidity of the floating structure, time period on flexural gravity wave motion. The study reveals that structural response of the floating structure can be mitigated for moderate thickness of the viscoelastic layer. Moreover, both shear modulus and viscosity of the viscoelastic layer play dominant role in reducing the structural response compared to the flexural rigidity of the structure. Further, pressure distribution within the viscoelastic bed decreases at a higher rate compared to the inviscid fluid layer irrespective of shear modulus and viscosity. The present study will be of immense help in the site selection of very large floating structures in the coastal water and installation of various marine facilities over muddy bed.
               
Click one of the above tabs to view related content.