LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The frequency response function of the creep compliance

Photo by lucabravo from unsplash

AbstractMotivated from the need to convert time-dependent rheometry data into complex frequency response functions, this paper studies the frequency response function of the creep compliance that is coined the complex… Click to show full abstract

AbstractMotivated from the need to convert time-dependent rheometry data into complex frequency response functions, this paper studies the frequency response function of the creep compliance that is coined the complex creep function. While for any physically realizable viscoelastic model the Fourier transform of the creep compliance diverges in the classical sense, the paper shows that the complex creep function, in spite of exhibiting strong singularities, it can be constructed with the calculus of generalized functions. The mathematical expressions of the real and imaginary parts of the Fourier transform of the creep compliance of simple rheological networks derived in this paper are shown to be Hilbert pairs; therefore, returning back in the time domain a causal creep compliance. The paper proceeds by showing how a measured creep compliance of any solid-like or fluid-like viscoelastic material can be decomposed into elementary functions with parameters that can be identified from best fit of experimental data. The proposed technique allows for a direct determination of the sufficient parameters needed to approximate an experimentally measured creep compliance and the presented mathematical formulae offers dependable expressions of the corresponding complex-frequency response functions.

Keywords: creep compliance; function; compliance; frequency response

Journal Title: Meccanica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.