LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bending of edge-bonded dissimilar rectangular plates

Photo by davidvives from unsplash

This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could… Click to show full abstract

This study develops the extended Kantorovich method (EKM) to provide a closed form semi analytical solution for the bending analysis of two edge-bonded thin rectangular plates. The constituent plates could be different in thickness, length, material, loading conditions, and Winkler foundation’s stiffness. A combination of clamp, free, and simply supports are applied to the structure. The shared edge in the composite plate is assumed to be perfectly bonded. By applying the EKM together with the idea of weighted residual technique, two sets of ODEs are obtained. Bending is assumed to remain continuous on the bonded edge. The EKM procedure is modified by applying the coordinate of an arbitrary shared point in the boundary conditions for the shared edge, to relate the bending of the two plates. The ODEs are solved iteratively to obtain the deflection function in a fast convergence trend. Two examples of aluminium-steel plate and functionally graded material-steel plate are considered. The deflection results from the boundary modified EKM (BM-EKM) are in high agreement with the finite element solution results. The bending of stepped plates is a special case of the current study. The suggested BM-EKM strengthens the EKM’s ability for solving complex jointed/bonded structures in structural analyses.

Keywords: bending edge; edge bonded; rectangular plates; bonded dissimilar; dissimilar rectangular; edge

Journal Title: Meccanica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.