Wear between balls and races has significant effects on the dynamic characteristics of bearing, which is the main reason to cause bearing failure. Some existing contact stiffness models were established… Click to show full abstract
Wear between balls and races has significant effects on the dynamic characteristics of bearing, which is the main reason to cause bearing failure. Some existing contact stiffness models were established to study the dynamic characteristics of bearing. However, the wear of bearing has been rarely investigated due to the complexities of contact load and wear mechanism. This paper presents a new dynamic wear simulation model of angular contact ball bearings mounted in pairs to solve this problem. A final contact stiffness model is established based on the wear model. The effects of running distance, horizontal load, preload, initial contact angle, number and diameter of balls on wear performances are analyzed. A generalized time-varying and piecewise-nonlinear dynamic model of angular contact ball bearings is established to perform an accurate investigation on its dynamic characteristics, especially considering the coupling effects of wear and rolling contact. The effects of wear on the contact stiffness and nonlinear dynamic characteristics are analyzed according to the dynamic model. Additionally, the variations of the contact stiffnesses and frequency responses with different preloads are discussed and the results indicate that parameter selection has significant effects on the wear and nonlinear response.
               
Click one of the above tabs to view related content.