In the current study, we used an integrated approach combining bioinformatics, rational drug design, one-pot synthesis, and biological experiments in vitro for the potential discovery of novel tryptophanyl-tRNA synthetase (TrpRS)… Click to show full abstract
In the current study, we used an integrated approach combining bioinformatics, rational drug design, one-pot synthesis, and biological experiments in vitro for the potential discovery of novel tryptophanyl-tRNA synthetase (TrpRS) inhibitors. Atom economic and diastereoselective syntheses were used to generate several Spirooxindole–indenoquinoxaline derivatives in situ from isatin and amino acids viz. proline, phenylglycine, and sarcosine through targeting the 1,3-dipolar cycloaddition of azomethine ylides. These compounds were assayed by biochemical TrpRS inhibition, using in vitro experiments to test against various gram-positive and gram-negative strains, and using diffuse large B cell lymphoma (DLBCL) cell lines. Compound 6e was found to be the most active in vitro with IC50 values of 225 and 74 nM for tests against hmTrpRS and ecTrpRS, respectively. We also found a MIC90 value of 4 µg/mL for tests against S. aureus and IC50 values which ranged from 2.9 to 4.8 µM for tests against proliferation of DLBCL cell lines. Moreover, compound 6e was remarkably good at inducing bacterial autolysis in MRSA strains. Our results suggested that such an integrated approach could be an attractive and viable strategy for the discovery of novel TrpRS inhibitors as potential lead compounds for antibiotics and as novel anticancer agents. Discovery of novel spirooxindole-indenoquinoxaline TrpRS inhibitors as potential lead compounds with antibacterial and antitumor activities.
               
Click one of the above tabs to view related content.