LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Data science-driven analyses of drugs inducing hypertension as an adverse effect

Photo from wikipedia

Abstract The utilization of approved medication is a requisite to combat certain diseases for health; however, the undesirable adverse effects (AEs) due to medication are generally unavoidable. Hypertension is one… Click to show full abstract

Abstract The utilization of approved medication is a requisite to combat certain diseases for health; however, the undesirable adverse effects (AEs) due to medication are generally unavoidable. Hypertension is one of such AEs resulting from approved medication in which blood pressure in the arteries gets elevated and is a risk factor for several diseases including heart and kidney failure. HTs are the approved drugs that can cause hypertension as an AE. Here, the goal of the study is to investigate the structural and functional diversities of HTs. In our quest to unravel the structural parameters of the HTs, a systematic analysis of the HTs having a different number and type of ring systems was conducted. The cellular component, molecular function and biological processes adopted by the gene products were analyzed. Moreover, our systematically done analysis suggests that all the target families are active in a common pathway, that is, nerve transmission. A comparison of the selected structural and functional aspect of HTs with anti-hypertensives suggests that HTs follow certain structural and functional features in spite of many possibilities. Our study provides a promising methodology that considers the influence of structural diversity of AE causing agents on a functional perspective for precursory clinical decision making. This could be extended to explore the structural and functional trends that are adopted by agents causing certain diseases or AEs. Graphic abstract

Keywords: science driven; driven analyses; data science; structural functional; analyses drugs; hypertension

Journal Title: Molecular Diversity
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.