LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Current understanding of genetic and molecular basis of cold tolerance in rice

Photo from wikipedia

Rice (Oryza sativa L.) is one of the most important crops worldwide, but its growth and production can be severely affected by climate change. As a tropical species, rice is… Click to show full abstract

Rice (Oryza sativa L.) is one of the most important crops worldwide, but its growth and production can be severely affected by climate change. As a tropical species, rice is in general vulnerable to the adverse effects of low temperature. To cope with or adapt to cold stress condition, rice has evolved elaborate regulatory mechanisms under both natural and artificial selection. Over the past few decades, intensive research efforts have been focused on abiotic stress biology in rice with genetic, genomic, and molecular strategies, disclosing a series of potential genetic determinants and mechanisms controlling cold stress tolerance. Here, we review cold tolerance (CT)-related quantitative trait loci (QTLs) identified by linkage and association mapping, together with key genes involved in cold sensing, signaling, and response. More importantly, recent studies have shown that CT-related QTLs/genes can be employed in genomic breeding aiming at developing cold-tolerant rice. Overall, the recent research progresses in understanding the complex genetic and molecular mechanisms of CT provide a substantial basis for CT improvement in rice.

Keywords: genetic molecular; cold tolerance; rice; tolerance; basis; current understanding

Journal Title: Molecular Breeding
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.