LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Episomal minicircles persist in periods of transcriptional inactivity and can be transmitted through somatic cell nuclear transfer into bovine embryos

Photo from wikipedia

Episomal plasmids based on a scaffold/matrix attachment region (S/MAR) are extrachromosomal DNA entities that replicate once per cell cycle and are stably maintained in cells or tissue. We generated minicircles,… Click to show full abstract

Episomal plasmids based on a scaffold/matrix attachment region (S/MAR) are extrachromosomal DNA entities that replicate once per cell cycle and are stably maintained in cells or tissue. We generated minicircles, episomal plasmids devoid of bacterial sequences, and show that they are stably transmitted in clonal primary bovine fibroblasts without selection pressure over more than two months. Total DNA, plasmid extraction and fluorescence in situ hybridization (FISH) analyses suggest that the minicircles remained episomal and were not integrated into the genome. Minicircles survived extended periods in serum-starved cells, which indicates that ongoing transcription in non-proliferating cells is not necessary for the maintenance of S/MAR-episomes. To test whether minicircles endure the process of somatic cell nuclear transfer (SCNT), we used cell-cycle synchronized, serum-starved, minicircle-containing cells. Analysis of cells outgrown from SCNT-derived blastocysts shows that the minicircles are maintained through SCNT and early embryonic development, which raises the prospect of using cell lines with episomal minicircles for the generation of transgenic animals.

Keywords: somatic cell; cell nuclear; bovine; episomal minicircles; nuclear transfer; cell

Journal Title: Molecular Biology Reports
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.