LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Whole exome sequencing identifies novel compound heterozygous pathogenic variants in the MYO15A gene leading to autosomal recessive non-syndromic hearing loss

Photo from wikipedia

Autosomal recessive non-syndromic hearing loss (ARNSHL) is a highly heterogeneous disease, for which more than 70 genes have been identified. MYO15A mutations have been reported to cause congenital severe-to-profound HL.… Click to show full abstract

Autosomal recessive non-syndromic hearing loss (ARNSHL) is a highly heterogeneous disease, for which more than 70 genes have been identified. MYO15A mutations have been reported to cause congenital severe-to-profound HL. In this study, we applied the whole exome sequencing (WES) to find the cause of HL in an Iranian family. A proband from an Iranian non-consanguineous family with hearing impaired parents, was examined via WES, after excluding GJB2 mutations as the most common ARNSHL gene via Sanger sequencing. Co-segregation analysis of the candidate variant was done in the family members. Interpretation of variants was according to the American College of Medical Genetics and Genomics (ACMG) guidelines. WES results showed novel compound heterozygous variants (p.Arg1507Ter and p.Val2815Valfs*10) in the MYO15A gene. These two variants, residing in highly conserved regions, were found to be co-segregating in the family and fulfill the criteria of being categorized as pathogenic, according to the ACMG guidelines. Here, we report successful application of WES to identify the molecular pathogenesis of ARNSHL in a patient with ARNSHL, as an example of an extremely heterogeneous disease. In agreement with previous studies, MYO15A is regarded to be important in causing HL in Iran.

Keywords: syndromic hearing; hearing; non syndromic; recessive non; autosomal recessive; gene

Journal Title: Molecular Biology Reports
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.